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LElTER TO THE EDITOR 

Quantum groups constructed from the non-standard braid 
group representations in the Faddeev-Reshetikhin-Takhtajan 
approach 

Mo-Lin Get$ and A C T WutS 
t Institute for Theoretical Physics, State Univenity o f  New York at Stony Brook, Stony 
Brook, NY 117943840, USA 

Received 26 March 1991 

Abstract. From the non-standard braid group representation for the spin-l case of s1,(2), 
we find that the corresponding algebra constructed in the Faddeev-Reshetikhin-TaLhtajan 
approach and allowed by the Yang-Baxter equation can be identified with the quantum 
group SI,(Z) where A is a root of unity. Conversely, this suggests that quantum groups 
with q being root of unity can be discussed using the non-standard braid group rep- 
resentation. 

Much progress has been made in the study of the quantum group (QG) [l-71 which 
was developed for solving the quantum Yang-Baxter equation (QYBE) [8,9] from the 
viewpoint of the quantum inverse scattering method [lo-121. The QYBE, which has its 
roots in the completely integrable systems, has emerged to be the common meeting 
ground of many beautiful branches of mathematics and physics [6,7]. In the spectral- 
parameter-independent form, the QYBE reads 

R I ~ R , , R ~ , =  R2,RnRn. (1) 
Or, in terms of the d matrix ( R  = RP, P = permutation), R satisfies the braid relation: 

R,2R13R,l  = R23R,2R23. (2) 
Faddeev, Reshetikhin and Takhtajan (FRT) have developed a powerful quantum 

L-operator formalism [4] which provides a direct connection between the quantum 
group (or Hopf algebra) and the R matrix (satisfying the braid relation). 

So far, two types of solution of (2) have been derived. 
(A) Standard solutions. These correspond to the usual cases where the R matrix 

can be constructed [2,3] from the projectors (or equivalently from the Casimirs and 
the q-analogue Clebsch-Gordan coefficients). The standard solution possesses the 
usual classical limit q +  1 [13]. For the standard solution, the FRT formalism gives the 
same QG as those discussed by Drinfeld [ 13 and Jimbo [2]. 

( B )  Non-standard solutions. These are recognized as alternative solutions to the 
braid relation. Non-standard solutions for sl,(n) were first obtained by Lee er al [14]. 
They do not have the above-mentioned properties of the standard solutions. So far, 
very little is known regarding the QG associated with these non-standard solutions. 
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z2= (1  - f')(l -UP). 
We note in passing that for the spin-1 case, R and d, coincide only at a special 

value of 1, namely at f = l/o. Such a limit 
d = Iim R ,  ( 9 )  

,*I / -  

may serve as a consistency check on our final result. 
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We write L+ and L- as 3 x 3 upper and lower triangular matrices respectively. This 
triangular nature of L' is closely related to the block triangular structure of the R 
matrices in (5) or (6): 

(10) 

( 1 1 )  

By straightforward calculation, (3) and (4) produce a large set of constraints on 
the 12 operators L;. These relations are summarized in appendix B. Out of these 
relations, we find that the following basic algebraic structure is the key to all those 
relations stated in appendix B. 

We find that L+ and L- can be parametrized as follows. 

(12) 

(13) 

I 
L- = [ -Tx- IC;' 

K, rX+ io2T-'ZK;1(X+)2 
K ,  -il-'ZK;'K,X+ 

0 0  K ; ' K :  

K ;' 0 

io2T-1ZK,(X-)2 if-'ZK,K;'X- K,K;' 

where 

(14) 7- f - t-'. 

In L', it turns out that there are only two independent diagonal elements IC,, K, 
and one independent off-diagonal element LT2 (hereafter called TX+) .  L;, and L:, are 
dependenr variables. Likewise for L-.  The basic algebra reads: 

1 
[X' ,  X - ] = - ( K , K ; '  7 - K , K ; ' )  (18) 

[KI, K21=0. (19) 

The consistency requirement that (X*)? commutes with everything can be verified. 
It turns out that the algebra (15)-( 19) can be simplified by a rescaling on the K, .  Let 

x2- K , K ; '  

and rescale X i  by 
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where 
A = w - l 1 2 -  -..i/3 

(2*)3=0.  

-e  
and equation (15) retains the same form 

Equation (18) now reads 

(24) 

The crucial feature is that (16) and (17) collapse into one equation: 
* I  

p 2 * y , - 2 =  K , K ; ' ~ * K , K - '  , -(J-) - K , g * K ; l  

or 

( 2 5 )  cJ&"cp =h"l2",  

We see that thealgebra represented by (24) and (25) is nothing but the SI,@) except 
that the usual parameter q (not being a root of unity) has now been replaced by A of 
(22) which is a root of unity. It is remarkable that the parameter f has disappeared in 
the final algebra (25) .  

We have seen by an explicit example that from the non-standard R, matrix for 
the spin-1 case, we recover in the FRT approach not the usual QO of s1,(2), but SI,@) 
where A is a root of unity. This suggests an interesting role played by such non-standard 

We note that the condition such as (23) implies that the representation for X' 
satisfying (X*)2J+' = O  is just (2 j+  1) dimensional (besides the more trivial ones). Such 
a condition is traceable to the appearance of the parameter o satisfying 02'+' = 1 in 
the non-standard BGR for spin j .  

Our algebra (23)-(25) belongs to the so-called modular Hopf algebra recently 
discussed by Reshetikhin and Turaev [22]. In this sense, the present work gives an 
explicit example of such modular Hopf algebra. 

It is instructive to compare our result for spin-1 case with the result of Lee [23] 
and with the recent result of [19] for the spin-; case. In an entirely different approach, 
Lee [23] has discussed the q-deformation of Sl(2) x ZN. With oN = 1, his algebra is 
similar to our (16). (17). He had a different expression than our commutator (18), but 
this can be shown to be equivalent by using the parametrization of the Bazhanov- 
Stroganov ansatz [isj. On the ot'her hand, his aigebra does not contain (x-)-' - 0  
and he did not discuss the decoupling. 

Our algebra (15)-(19) is similar to that of [19] upon identification of (X*)2'+'=0 
and 02'+' = 1. However, the authors of [19] did not discuss the decoupling leading to 
( 2 5 )  as is done here. 

BGR. 
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Appendix A 

For spin-1 of s1,(2), the BGR d has the form 

d =block diag[A,, A,, A,, A;, A:] (AI) 

where 

O P  0 P' A , = u  A: = U' 

('42) 

The parameters appearing in these matrices are to be determined by the braid relation. 
By an extended diagrammatic calculation, we obtain two types of solutions. 

(A) Standard solution: 

(A3) 
P=P' U = up w = w p  = U - u - l p 2  

Po = u- lp ,  W O =  w(1- u-Iuo) = . ;I ,- 'p2w2. 

Equations (A3) with U = 1, uo= 1, p = f give the solution shown in [20]. It belongs to 
the 'standard' family because it can be generated by the usual QG approach [2,3]. 

(B) Non-standard solution: 
w = u - u - ' p 2  w ~ = u ~ - u ) - I  P" = up'2 

P ' 2 =  u9ug3 (u2u 'p -2 )2  

WO= w ( l - u - ' u , )  P o =  u-lp2 

r 2 =  u;'u-'p2ww'. 

Equations (A4) admit a solution with 

with U'= I,p = f 4 u = l  u'=01  

that gives the non-standard solution used in (6) [14,21]. 

ation can be performed [24]. We can directly prove that the d ( x )  given by 
To give the solution of the spectral parameter-dependent YBE, the Yang-Baxteriz- 

d(x )  X(X - I )~ - '+X(  1 - f C 2 + W 2 t - 4 - W 2 f - 2 ) 1  -(x- l ) o ~ ~ t - ~ R  (Ab) 

satisfies the Y B E  

d;b(x)d$(xy)d%(y)  = RF(y)d:k(xy)R:j(x).  (A7) 
In deriving (A6), the Yang-Baxterization prescription shown by [24] has been used. 

The R-' in (A6) has the same block structure as d, and can be obtained from d by 
'reflecting' each submatrix along the skew diagonal and letting t +  1-'. 

Appendix B 

We summarize the algebraic details from (3) and (4) with the insertion of d ,  of (6) 
and L* from ( IO) ,  (11). 
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The 9 x 9 matrix R, as written, is block diagonal. This corresponds to the following 
labelling of the composition of two spin-1 states: (1 l ) ,  (lO,Ol), ( 1  -1 ,OO,  -1  l ) ,  
(0 -1 ,  -1 0), (-1 -1 ) .  On the other hand, in the usual direct product of (1,0, - I ) @  
( l , O , - l ) ,  the labelling would come out as (1  l , l O , l - l ) ,  ( 0 1 , 0 0 , 0 - I ) ,  
( -1  1, -1 0, -1 - l ) ,  which is not the same. So in order to conform to the basis in 
which the R matrix is written, judicial permutations in L'O L' between the third and 
fourth. and between fifth and sixth. rows and columns are to be undertaken. 

(1) Diagonal elements commute. ( 1 5  such non-trivial pairs) 

[L:,  L;]=o i, j = 1,2,3, all f combinations 

(2) Relations involving squares, and products vanishing: 

(L:,y = 0 (LJ2 = 0 

Use (83) to express LT3 in terms of (LT2)', the same for L,: 

-iZ -iZ 
(LT3)2=- G 3 G 3  f ( 1 -  1 2 )  

(L,h)* = - i(l-i2)L&yl 

(L:d2= L:,L:3 (L;$ = L ,  LT3. 

Use (B5) to express LT3 in terms of L:, and L:2, the same for LT3: 
L - L - -  2 3  - - -  L:,L:,= O J ' ~ ~ L L ; , L : , = O  21 3 2 - w  f L3ZL21-0 

L ; ~ L ; , = ~ I ~ L : , L ; , = O  

( LT2)3 = 0 

LT2Li, = 013L;,L;2 = 0. 

Equations (B6), (87) imply 

( L ; , ) ~  = 0. 

Together with (83) .  we see that (82) is satisfied. 
(3) Relations involving L2k on L: and their conjugates: 

(4) Relations among L+L+; L-L- 

Use (Bl l  to express L:, in terms of LTZr the same for Lip 

iZ 
Lr2LT2 =- L&21 

i Z  
G 3 L L  ( 1 - t 2 )  

Lf L+ -- 
( I  - t 2 )  22 2 3 -  

L:,L:, = -tLT2L;, Li2LT, = -tL,L,. 



It is straightforward to verify that all these relations are satisfied with the basic algebra 
given by (12)-(19). 
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